Prediction of Surface Roughness in Turning of Ud- Gfrp Using Mathematical Model and Simulated Annealing

نویسنده

  • Surinder Kumar
چکیده

Glass fiber reinforced plastic (GFRP) composite materials are a feasible alternative to engineering materials and are being extensively used in variety of engineering applications. Accordingly, the need for accurate machining of composites has increased enormously. During machining, the obtained surface roughness is an important aspect. The present investigation deals with the study and development of a surface roughness prediction model for the machining of unidirectional glass fiber reinforced plastics (UD-GFRP) composite using regression modeling and optimization by simulated annealing. The process parameters considered include tool nose radius, tool rake angle, feed rate, cutting speed, cutting environment (dry, wet, cooled) and depth of cut. The predicted values from surface roughness model are compared with the experimental values. The results of prediction are quite close with the experimental values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A genetic algorithmic approach for optimization of surface roughness prediction model in turning using UD-GFRP composite

Machining of glass fiber reinforced plastic composite materials is an active area of research in current manufacturing processes. Achieving an improved surface finish is of high priority while machining the polymer based plastics composites due to the poor machinability of glass fibers. The present work deals with the study and development of a surface roughness prediction model for machining u...

متن کامل

Prediction of Surface Roughness in Turning of Ud-gfrp Using Artifical Neural Network

The present investigation deals with the study and development of a surface roughness prediction model for the machining of unidirectional glass fiber reinforced plastics (UDGFRP) composite using Artificial Neural Network (ANN). The feed forward back propagation is used. Taguchi method (Orthogonal L16 array) is employed to carry out the experimental work. The process parameters selected for stu...

متن کامل

Optimization of surface roughness in turning of GFRP composites using genetic algorithm

Glass fiber reinforced polymer composites are finding its increased applications in variety of engineering applications such as aerospace, automobile, electronics and other industries. However, the users of FRP are facing difficulties to machine it, because of fiber delamination, fiber pull out, short tool life, matrix debonding and formation of powder like chips. The present investigation focu...

متن کامل

Optimization of Minimum Quantity Liquid Parameters in Turning for the Minimization of Cutting Zone Temperature

The use of cutting fluid in manufacturing industries has now become more problematic due to environmental pollution and health related problems of employees. Also the minimization of cutting fluid leads to the saving of lubricant cost and cleaning time of machine, tool and work-piece. The concept of minimum Quantity Lubrication (MQL) has come in to practice since a decade ago in order to overco...

متن کامل

Prediction Model for CNC Turning on AISI316 with Single and Multilayered Cutting tool Using Box Behnken Design (RESEARCH NOTE)

Austenitic stainless steels (AISI316) are used for many commercial and industrial applications for their excellent corrosive resistance. AISI316 is generally difficult to machine material due to their high strength and high work hardening tendency. Tool wear (TW) and surface roughness (SR) are broadly considered the most challenging phases causing poor quality in machining. Optimization of cutt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013